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ABSTRACT
For 50 years, progress toward the direct calculation of the ground-
state two-electron reduced density matrix (2-RDM) was stymied
from an inability to constrain the 2-RDM to represent an N-electron
wave function. Recent advances in theory and optimization have
realized the direct calculation of the 2-RDM. A variational 2-RDM
procedure, using first-order semidefinite programming, has been
shown to capture multireference correlation effects important at
nonequilibrium geometries [Mazziotti, Phys. Rev. Lett. 2004, 93, No.
213001]. This method emerged from research on a nonvariational
calculation of the 2-RDM by the contracted Schrödinger equation.
Both approaches will be discussed and illustrated.

I. Introduction
The ground-state energy of a many-electron atom or
molecule may be estimated by minimizing the expectation
value of the Hamiltonian with respect to a trial wave
function with adjustable parameters. By the Rayleigh-Ritz
variational principle, the energy estimate from a trial wave
function will be an upper bound on the exact ground-
state energy. In the early days of quantum chemistry, the
judicious design of trial wave functions was practically a
“contest” to obtain the best upper bounds on the exact
energy.

In 1927, Landau1 and von Neumann2 introduced the
density matrix into quantum mechanics. The density
matrix for the N-electron ground-state wave function,
Ψ(1,2,...,N), where the numbers represent the spatial and
spin coordinates for each electron is given by

Integrating the N-electron density matrix over coordinates
3 to N generates the two-electron reduced density matrix
(2-RDM)

Because electrons are indistinguishable with only pairwise
interactions, the energy of any atom or molecule may be
expressed as a linear functional of the 2-RDM.3,4 Formu-

lating the energy as a linear functional of the 2-RDM,
however, suggests the tantalizing possibility of employing
the 2-RDM rather than the many-electron wave function
to compute the ground-state energy of atoms and mol-
ecules. In 1955, Mayer4 performed an encouraging pencil-
and-paper calculation, but Tredgold5 soon discovered that
the energy for a simple system from a trial 2-RDM could
be optimized substantially below the exact ground-state
energy. Why did the Rayleigh-Ritz variational principle
not hold for the 2-RDM expression of the energy? Tredgold,5

Coleman,6 Coulson,7 and others realized that for an
N-electron problem the trial 2-RDM was assuming a form
that did not correspond to an N-electron wave function;
that is, the trial 2-RDM at the minimum energy could not
be obtained from the integration of an N-electron density
matrix. The 2-RDM must be constrained by additional
rules (or conditions) to derive from an N-electron wave
function. Coleman described these necessary and suf-
ficient rules as N-representability conditions.6

The unsuccessful back-of-the-envelope 2-RDM calcula-
tions of Coleman and Tredgold already employed four
basic requirements for a density matrix of indistinguish-
able fermions:6 the matrix should be (i) normalized to
conserve particle number, (ii) Hermitian, (iii) antisym-
metric under particle exchange, and (iv) positive semidefi-
nite to keep probabilities nonnegative. A matrix is positive
semidefinite if and only if all of its eigenvalues are
nonnegative. These conditions are sufficient to guarantee
that the 2-RDM is a density matrix but not sufficient for
the matrix to be representable by an N-electron density
matrix, or N-representable. What additional conditions
must be imposed on a 2-RDM to restrict it to be N-
representable? While considerable research effort was
initially made to understand these conditions, interest in
the 2-RDM approach to many-electron atoms and mol-
ecules began to wane as the N-representability problem
appeared intractable.

Interest in the 2-RDM and its N-representability re-
turned in the 1990s with the direct calculation of the
ground-state 2-RDM without the many-electron wave
function from a self-consistent solution of the contracted
Schrödinger equation.8-15 Recent progress has revealed the
importance of a class of N-representability constraints,
called positivity conditions.16,17 Erdahl and Jin16 and
Mazziotti and Erdahl17 generalized these conditions, orig-
inally discussed by Coleman6 and Garrod and Percus,18

to a hierarchy of N-representability conditions, and
Mazziotti and Erdahl17 showed that each level of the
hierarchy corresponds to enforcing the generalized un-
certainty relations for a class of operators. With the
positivity conditions, the ground-state energy of many-
electron atoms and molecules can be accurately computed
through a variational calculation in which the energy is
directly parametrized as a linear functional of the 2-RDM.

Two approaches to the calculation of the ground-state
2-RDM will be discussed in this Account: (i) the varia-
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ND(1,2,...,N;1′,2′,...,N′) ) Ψ(1,2,...,N)Ψ*(1′,2′,...,N′). (1)

2D(1,2;1′,2′) ) ∫Ψ(1,2,...,N)Ψ*(1′,2′,...,N) d3...dN. (2)
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tional minimization of the energy16,17,19-33 and (ii) the
nonvariational solution of a contracted Schrödinger equa-
tion (CSE).8-15,34-51 The variational calculation of the
2-RDM constrained by necessary N-representability con-
ditions yields a lower bound on the ground-state energy
in a given finite basis set. The 2-RDM method yields
ground-state energies with useful accuracy even when the
wave function becomes difficult to parametrize as in
transition-state structures or other stretched geometries
of a potential energy surface.21,22,27,28,30 Variational solution
of the 2-RDM with positivity constraints requires a special
constrained optimization known as semidefinite program-
ming, which also has applications in control theory,
combinatorial optimization, and even finance. In the
second approach, the 2-RDM is computed by solving a
system of equations known as the contracted Schrödinger
equation (CSE).8-15,34-51 The CSE is a projection of the
N-electron Schrödinger equation onto the space of two
electrons. With the 3- and 4-RDMs in the CSE approxi-
mated as functionals of the 2-RDM,14,15,35,39,40 the CSE is
solved self-consistently for the energy and 2-RDM.9,10,41,42,50,51

II. Variational Principle and N-Representability
In quantum mechanics, the ground-state energy of any
N-electron atom or molecule with Hamiltonian Ĥ may be
computed in principle from the expectation value of the
Hamiltonian with respect to the ground-state wave func-
tion Ψ(1,2,...,N)

Because the electrons are indistinguishable with pairwise
interactions, the N-electron Hamiltonian in eq 3 may be
replaced by an effective two-electron Hamiltonian opera-
tor, known as the reduced Hamiltonian operator,

Since the reduced Hamiltonian depends only upon elec-
trons one and two, it may be moved outside the integra-
tion over electrons three to N to obtain

or

where the inner integration of the wave function over
electrons three through N in eq 5 defines the 2-RDM
D(1,2;1′,2′)3,4 in eq 6. From a knowledge of the 2-RDM,
we can compute any two-electron properties of an atom
or molecule.

How can we generate N-representability conditions so
that we can optimize the ground-state energy variationally
as a functional of the 2-RDM? Consider acting on the
ground-state wave function with the operators {Ĉi} to
generate a set of basis functions {|Φi〉}

The metric (or overlap) matrix M associated with these
basis functions

must be positive semidefinite, which we denote as M g

0. A matrix is positive semidefinite if and only if its
eigenvalues are nonnegative. If the elements of the metric
matrix may be evaluated only with a knowledge of the
p-RDM, then the condition M g 0 is a p-positivity
condition, which restricts the N-representability of the
p-RDM.17

To illustrate the positivity conditions concretely, we
begin by considering the 1-positivity conditions whose
metric matrices may be evaluated from a knowledge of
the 1-RDM only. If we choose for each Ĉj a second-
quantized operator âj that kills a particle in the jth or-
bital, we obtain the one-particle reduced density matrix
(1-RDM) whose elements are

Similarly, if we select for each Ĉi an operator âi
† that

creates a particle in the ith orbital, we obtain the 1-hole
reduced density matrix (1-HRDM) whose elements are

Physically, the positivity constraint 1D g 0 corresponds
to ensuring that the probability for finding one electron
in any orbital remains nonnegative, while the comple-
mentary constraint 1Q g 0 corresponds to ensuring that
the probability for not finding one electron (or finding a
hole, which is the absence of a particle) remains nonne-
gative.

The expectation value of the anticommutation relation
for fermions

yields a linear mapping between the matrix elements of
1D and 1Q

From this relation, we perceive that the eigenfunctions
(or orbitals) that diagonalize the one-particle RDM also
diagonalize the one-hole RDM because the Kronecker δ
function is invariant under unitary transformations. Hence,
the ith eigenvalue (or occupation number) of the one-
hole RDM may be expressed in terms of the ith occupation
number of the one-particle RDM, ni, as 1 - ni. The
nonnegativity of the occupation numbers, ni g 0 and 1 -
ni g 0, from one-positivity conditions implies the Pauli
exclusion principle that the occupation numbers of the
spin-orbitals must lie between zero and one, that is, 0 e

ni e 1. Coleman6 first proved in 1963 that the four basic
conditions for a fermion density matrix plus the one-
positivity conditions are not only necessary but also

E ) ∫Ψ*(1,2,...,N)ĤΨ(1,2,...,N) d1 d2 ... dN. (3)
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|Φi〉 ) Ĉi|Ψ〉. (7)
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sufficient constraints for the ensemble N-representability
of the 1-RDM; in other words, every one-electron density
matrix that obeys the one-positivity conditions derives
from at least one N-electron ensemble density matrix.

We now examine the metric matrices that can be
expressed from a knowledge of the 2-RDM only. Con-
straining these matrices to be positive semidefinite yields
the two-positivity conditions.17,18,21 The basis functions in
eq 7 that produce these 2-RDM metric matrices may be
naturally grouped into three orthogonal vector spaces
according to the number of creation operators in Ĉ: (i) Ĉ
∈ {âiâj}, (ii) Ĉ ∈ {âi

†âj
†}, and (iii) Ĉ ∈ {âi

†âj}. The elements
of the three metric matrices M from these groups are given
by

The constraint 2D g 0 prevents the probability distribution
for finding two particles in two orbitals from being
anywhere negative, while the constraint 2Q g 0 enforces
this nonnegativity for two holes. Similarly, the condition
2G g 0 restricts the probability for finding a particle and
a hole in any two spin orbitals from being negative.

These three metric matrices for two-positivity, 2D, 2G,
and 2Q, are linearly related21 by rearranging the creation
and annihilation operators according to the anticommu-
tation relations:

and

where the 1-RDM arises from the integration (or contrac-
tion in a matrix representation) of the 2-RDM

and the symbol ∧ denotes the antisymmetric tensor
product known as the Grassmann wedge product.13 With
contraction, it may be demonstrated that the two-positiv-
ity conditions contain the one-positivity conditions. Unlike
the one-positivity conditions for the 1-RDM, the two-
positivity conditions are necessary but not sufficient for
restricting the 2-RDM to be N-representable. As will be
shown in the applications, the two-positivity conditions
have proven fairly effective constraints for ground-state
calculations of many-electron atoms and molecules at
both equilibrium and nonequilibrium geometries.21,22,27,28,30

What are the N-representability conditions not in-
cluded by the two-positivity conditions? Erdahl and Jin16

and Mazziotti and Erdahl17 have shown that the two-
positivity conditions may be generalized to p-positivity
conditions that arise from the metric matrices that can
be expressed from only a knowledge of the p-RDM. At the

level of three-positivity, there are four distinct metric
matrices for fermions that correspond to restricting the
probability distributions to be nonnegative for three
particles 3D g 0, two particles and one hole 3E g 0, one
particle and two holes 3F g 0, and three holes 3Q g 0.17,21

Full three-positivity conditions have not yet been applied
to atoms and molecules, but calculations on spin systems
show that the accuracy of the energy and properties
converges rapidly with the level of p-positivity with three-
positivity yielding excellent results at all interaction
strengths even where traditional wave function methods
fail.17,31 Two different types of partial three-positivity
conditions have been proposed: (i) the lifting condi-
tions21,31 and (ii) the T1 and T2 conditions.24,32,52 The latter
conditions correspond to the following restrictions: T1 )
3D + 3Q g 0 and T2 ) 3E + 3F g 0. Originally proposed by
Erdahl,52 the T1 and T2 conditions have been applied by
Zhao et al.24 to compute the ground states of atoms and
molecules at equilibrium geometries with similar or better
accuracy than many standard wave function methods. The
author has applied a spin- and symmetry-adapted version
of the T2 condition to molecules with similar accuracy at
both equilibrium and stretched geometries in nonminimal
basis sets.32

The p-positivity conditions guarantee the nonnegativity
of important probability distributions involving different
mixtures of particles and holes. Their strength, however,
may be further appreciated from their enforcement of
important classes of the generalized uncertainty relations.17

Mazziotti and Erdahl have shown that the 2p-positivity
conditions enforce the generalized uncertainty relations
for all pairs of Hermitian p-body operators Ĉ1 and Ĉ2, that
is,

where

and the expectation values may be evaluated with the 2p-
RDMs. Therefore, the two-positivity conditions imply the
uncertainty relations for all pairs of one-body operators.

Unlike the optimization of a trial wave function that
produces an upper bound on the ground-state energy by
the Rayleigh-Ritz variational principle, the variational
2-RDM method with necessary N-representability con-
straints such as the positivity conditions yields a lower
bound on the ground-state energy. For this reason, the
variational 2-RDM method has also been called the lower
bound method in the literature.16 The lower bound on the
energy, however, is only a signature for a more funda-
mental difference between the wave function and 2-RDM
approaches to many-electron correlation. All wave func-
tion methods, whether variational or not, depend on a
parametrization of the N-electron wave function. In the
variational case, this parametrization leads to the energy
upper bound of the Rayleigh-Ritz variational principle,
while in nonvariational methods it generates accuracy
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†âpâi
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through a certain order of perturbation theory. In the
variational 2-RDM method, however, the set of 2-RDMs
contains all N-representable 2-RDMs, and hence, all wave
functions, whether single- or multireferenced, are correctly
parametrized. In fact, because the set of 2-RDMs defined
by necessary positivity conditions is larger than the set of
N-representable 2-RDMs, the 2-RDM is slightly “over-
parametrized”, which leads to the lower bounds to the
energies of N-electron atoms and molecules. Nevertheless,
because the positivity conditions do not depend on a
specific reference configuration like the Slater determinant
for a single-reference wave function technique, the varia-
tional 2-RDM method can treat both single- and multi-
reference correlation effects with consistent accuracy. As
we will show in the applications, this is especially useful
for describing the shape of potential energy surfaces.

III. Semidefinite Programming
Variational calculation of the energy with respect to the
2-RDM constrained by two-positivity conditions requires
minimizing the energy in eq 5 while restricting the 2D,
2Q, and 2G to be not only positive semidefinite but also
interrelated by the linear mappings in eqs 16-18. This is
a special optimization problem known as a semidefinite
program. The solution of a semidefinite program is known
as semidefinite programming.

In the mid-1990s, a powerful family of algorithms,
known as primal-dual interior-point algorithms, were
developed for solving semidefinite programs.53 The phrase
interior-point means that the method keeps the trial
primal and dual solutions on the interior of the feasible
set throughout the solution process. In these algorithms,
a good initial guess for the 2-RDM is a scalar multiple of
the two-particle identity matrix. Advantages of the interior-
point methods are (i) rapid quadratic convergence from
the identity matrix to the optimal 2-RDM for a set of
positivity conditions and (ii) a rigorous criterion in the
duality gap for convergence to the global minimum. These
benefits, however, come with large memory requirements
and a significant number of floating-point operations per
iteration, specifically O(nm3 + n2m2) where n is the
number of variables and m is the number of constraints.
With m and n proportional to the number of elements in
the 2-RDM (∼r4), the method scales approximately as r16

where r is the rank of the one-particle basis set.21,23 The
variational 2-RDM method has been explored for minimal
basis sets with the primal-dual interior-point algorithm,
but the computational scaling significantly limits both the
number of active electrons and the size of the basis
set.20-24,26

The author has recently developed a large-scale semi-
definite programming algorithm for solving the semi-
definite program in the variational 2-RDM method.27,28

The optimization challenge in the 2-RDM method is to
constrain the metric matrices to be positive semi-
definite while the ground-state energy is minimized. The
algorithm constrains the solution matrix M to be positive
semidefinite by a matrix factorization

where for the two-positivity conditions

Such a matrix factorization was previously considered in
the context of 2-RDM theory by Rosina,54 Harriman,55 and
the author,13 and it was recently employed for solving
large-scale semidefinite programs in combinatorial opti-
mization.56 The linear constraints, including the trace, the
contraction, and the interrelations between the metric
matrices, become quadratic in the new independent
variables R. Therefore, the factorization in eq 21 converts
the semidefinite program into a nonlinear program where
the energy must be minimized with respect to R while
nonlinear constraint equalities are enforced.

We solve the nonlinear formulation of the semidefinite
program by the augmented Lagrange multiplier method
for constrained nonlinear optimization.27,28 Consider the
augmented Lagrangian function

where R is the matrix factor for the solution matrix M,
E(R) is the ground-state energy as a function of R, {ci(R)}
is the set of equality constraints, {λi} is the set of Lagrange
multipliers, and µ is the penalty parameter. For an
appropriate set of multipliers {λi}, the minimum of the
Lagrangian function with respect to R corresponds to the
minimum of the energy E(R) subject to the nonlinear
constraints ci(R). The positive third term in the augmented
Lagrangian function, known as the quadratic penalty
function, tends to zero as the constraints are satisfied.
Evaluating the function and its gradient costs approxi-
mately r6 floating-point operation,27 mainly from the
matrix multiplication of the block-diagonal R matrix with
itself, where r is the rank of the one-particle basis set.
Storing the factorized 2-RDM, several copies of its gradi-
ent, and the Lagrange multipliers scales as r4. In com-
parison with the primal-dual interior-point approach,
which scales as r16 and r8 in floating-point operations and
memory storage, the first-order nonlinear algorithm for
the variational 2-RDM method27,28 offers a significant
improvement in computational efficiency.

IV. Contracted Schro1dinger Equation
The N-particle Schrödinger equation may be integrated
(or contracted) onto the space of two particles to obtain
a contracted Schrödinger equation8-15,34-51

Because the Hamiltonian contains only pairwise interac-
tions, the left-hand side of the CSE can be expressed

M ) RR*, (21)

M ) (2D 0 0

0 2Q 0

0 0 2G
). (22)

L(R) ) E(R) - ∑
i

λici(R) +
1

2µ
∑

i

ci(R)2, (23)

∫ĤΨ(1,2,...,N)Ψ*(1′,2′,...,N′) d3 d4 ... dN )

E 2D(1,2;1′,2′). (24)
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directly in terms of the 2-, 3-, and 4-RDMs without the
many-electron wave function.

Valdemoro and co-workers8 realized in 1993 that the
2-RDM might be directly computed with the CSE if the
3- and 4-RDMs were approximated as functionals of the
2-RDM. In 1994 Colmenero and Valdemoro9 presented
preliminary results for atoms and molecules, in 1996
Nakatsuji and Yasuda10,11 solved the CSE with Green’s
function approximations for the 3- and 4-RDMs, and in
1998 the author systematized the reconstruction of the
3- and 4-RDMs by using cumulant theory for
RDMs.13-15,35,37-39 The cumulant expansion of the 3-RDM
in terms of the lower RDMs may be written as

where

and the symbol ∧ denotes the antisymmetric tensor
product or Grassmann wedge product.13 The term 3∆ is
the cumulant or connected part of the 3-RDM that cannot
be written as a sum of wedge products involving the lower
RDMs. A similar cumulant expansion for the 4-RDM may
be given in terms of the 1-RDM and the cumulant parts
of the 2-, 3-, and 4-RDMs. At the simplest level of
approximation the 3- and 4-RDMs may be reconstructed
from the 2-RDM by neglecting their cumulant parts.

The reconstruction of the higher RDMs from the
2-RDM is justified by Rosina’s theorem.13 For any system
with just pairwise interactions, as long as the ground state
is nondegenerate, there is a one-to-one mapping between
the ground-state 2-RDM and its N-electron wave function.
Rosina originally made this observation in 1967, and the
author reintroduced his idea as a theorem in 1998.13 The
short proof is as follows. Assume that there are two wave
functions, Ψ1 and Ψ2, that contract to the same 2-RDM.
Since the energy may be evaluated from the 2-RDM by
eq 3, both wave functions have the same energy. By the
Rayleigh-Ritz variational principle, however, there are two
ground-state wave functions, Ψ1 and Ψ2, with the same
energy, which contradicts the assumption that the ground-
state wave function is nondegenerate. As a corollary, the
ground-state 2-RDM uniquely determines all of the higher
p-RDMs for p > 2.13 Unlike the one-density functionals,
these reconstructions (or universal functionals of the
ground-state 2-RDM) are valid or universal for any type
of two-particle interaction.

With reconstruction the CSE may be iteratively
solved for an approximation to the correlated 2-RDM.
Initial applications were made to atoms and molecules
by Colmenero and Valdemoro9,12 and Nakatsuji and
Yasuda10,11 and to the Lipkin spin model by
Mazziotti.13-15,39 For the Lipkin model, the CSE yields
ground-state energies and 2-RDMs that are more accurate
than either second- or fourth-order many-body perturba-
tion theory and similar in accuracy to the coupled-cluster
singles-doubles method.39 Contrary to the findings of
Harris,43 computational experience shows clearly that in

the Lipkin model using either the Nakatsuji-Yasuda or
the Mazziotti correction to the 3-RDM is critical to
convergence as well as accuracy.13,39

To solve the CSE iteratively for atoms and molecules,
the author found it necessary to correct the positivity of
the two-particle and two-hole RDMs, respectively.41,42 By
analogy with the purification methods employed in linear-
scaling 1-RDM calculations, these methods for correcting
the 2-RDM’s N-representability were given the name
correlated purification.41 The poor results from Nooijen
and co-workers45 follow from solving the CSE without any
correlated purification to enforce N-representability. The
author’s calculations demonstrate that by using recon-
struction and purification the CSE may be solved for
atoms and molecules with an accuracy that is better than
second-order many-body perturbation theory although
not presently as accurate as the coupled-cluster singles-
doubles method.41,42 Alcoba and Valdemoro50 have re-
cently developed a new correlated purification strategy
that includes correction of 2G g 0. Their calculations with
the CSE exhibit convergence and accuracy similar to that
reported by the author.51

V. Applications of the 2-RDM
The variational 2-RDM method has been applied to a
variety of atoms and molecules at both equilibrium and
stretched geometries. We will summarize calculations on
a variety of molecules: (i) the nitrogen molecule,30 (ii) a
set of organic molecules,29 (iii) a set of inorganic mol-
ecules,32 (iv) the hydroxide radical,33 and (v) a hydrogen
chain.27 Finally, we illustrate the self-consistent solution
of the CSE in a calculation on water.41

A challenging correlation problem is the accurate
description of the stretching and dissociation of the triple
bond in nitrogen. Six-to-eight-particle excitations from the
Hartree-Fock determinant are required to treat the
nitrogen dissociation correctly. Using a correlation-
consistent polarized double-ú basis set, we compare in
Figure 1a,b the shape of the potential curve for nitrogen
from the variational 2-RDM method with the curves from
several wave function methods including full configuration
interaction (FCI).30 The 2-RDM energies are consistent
lower bounds to the FCI energies throughout the stretch.
In the figure, we present the 2-RDM curve shifted by the
difference between the 2-RDM and CCSD(T) energies at
equilibrium. The 2-RDM method yields a potential energy
curve that is more accurate than the single-reference
methods in Figure 1a and equally accurate as the multi-
reference methods in Figure 1b. The equilibrium bond
distance and the harmonic frequency from the 2-RDM
method are 1.1167 Å and 2311 cm-1 (Table 1), which is in
good agreement with the FCI numbers, 1.1172 Å and 2321
cm-1. Multireference configuration interaction with single-
double excitations yields 1.1184 Å and 2311 cm-1.

The 2-RDM method has been applied to a large set of
organic molecules29 to examine trends with functional
groups. Table 2 shows a set of organic molecules com-
puted by the 2-RDM method in an STO-6G basis set to

3D/6 ) 1D∧1D∧1D + 3 2∆∧1D + 3∆, (25)

2∆ ) 2D/2 - 1D∧1D, (26)
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illustrate trends with (i) molecular size, (ii) hybridization,
(iii) electronegativity, and (iv) atomic radius. The first six
rows of the table show the alkane chains from methane
through hexane. The 2-RDM method is size extensive, that
is, the error in its energy remains constant with increasing
molecular size. Comparing the errors in the percentage
of the correlation for propane, 1-propene, and 1-propyne
reveals that the error is greater when the atoms have more
p character in their hybridization. Third, if a hydrogen is
replaced with a more electronegative functional group like
OH, the accuracy of the 2-RDM increases, as seen in the
comparison of propane and propanol, and if an oxygen
atom is replaced with an atom of larger size such as sulfur,
the 2-RDM accuracy decreases, as seen in the comparison
of propanol and propanthiol. These trends reflect the

systematic nature of the positivity conditions and suggest
a straightforward correction to the 2-RDM energies for
organic molecules based on functional groups.29 With the
functional group correction, the 2-RDM predicts the
ground-state energies for a wide range of organic mol-
ecules within a few percent of the total correlation energy.

The N-representability conditions on the 2-RDM can
be systematically strengthened by adding some of the
three-positivity constraints to the two-positivity condi-
tions. For three molecules in valence double-ú basis sets,
Table 3 shows that the 2-RDM method with the T2

condition (DQGT2) yields energies at equilibrium geom-
etries that are similar in accuracy to the coupled cluster
method with single-double excitations and a perturbative
triples correction. The error is reported in millihartrees
(mhartree).

Computation of open-shell molecular energies and
properties is important in many areas of chemistry from

FIGURE 1. The shape of the potential curve for nitrogen in a
correlation-consistent polarized double-ú basis set for the variational
2-RDM method, as well as (a) single-reference coupled cluster, (b)
multireference second-order perturbation theory (MRPT) and single-
double configuration interaction (MRCI), and full configuration
interaction (FCI) wave function methods. The symbol 2-RDM*
indicates that the potential curve was shifted by the difference
between the 2-RDM and CCSD(T) energies at equilibrium.

Table 1. The Equilibrium Bond Distance and the
Harmonic Frequency for N2 from the 2-RDM Method

with Two-Positivity (DQG) Conditions Compared
with Their Values from Coupled-Cluster

Singles-Doubles with Perturbative Triples (CCSD(T)),
Multireference Second-Order Perturbation Theory
(MRPT), Multireference Configuration Interaction
with Single-Double Excitations (MRCI), and Full

Configuration Interaction (FCI)a

method Req (Å) ω (cm-1)

CCSD(T) 1.1185 2344
MRPT 1.1176 2309
MRCI 1.1184 2311
2-RDM 1.1167 2311
FCI 1.1172 2321

a All methods employ a correlation-consistent polarized double-ú
basis set.

Table 2. Accuracy of Variational RDM Theory Subject
to Two-Positivity for a Set of Organic Moleculesa

error in % of
correlation energy

CCSD(T)
molecule Eground

c Ecorrln
d

no
correction correction

methane -40.191 -0.082 +24.8 -3.8
ethaneb -79.261 -0.153 +29.8 +0.0
propane -118.241 -0.224 +32.0 +1.7
butane -157.268 -0.296 +33.3 +2.8
pentane -196.294 -0.368 +33.8 +3.1
hexane -235.321 -0.440 +32.6 +2.2
1-propene -117.023 -0.239 +30.5 +1.6
1-propyne -115.810 -0.244 +26.1 +0.8
propanol -192.823 -0.275 +30.3 +2.3
2-propanoneb -191.663 -0.296 +29.1 +0.0
1-propanal -191.654 -0.298 +28.7 +1.5
2-propynal -189.222 -0.320 +24.6 +0.9
2-methyl-2-propenal -229.470 -0.384 +29.7 +2.2
propanoic acid -266.266 -0.348 +26.8 +0.2
propylamine -173.140 -0.291 +31.6 +1.1
propanamide -246.576 -0.359 +28.9 +0.5
propanethiol -514.435 -0.220 +50.9 +4.2
methyl-cyclopropane -156.040 -0.292 +35.2 +2.0
cyclopropylamine -171.923 -0.287 +34.1 +1.0
cyclopropanone -190.415 -0.296 +32.0 +0.3
cyclopropanol -191.598 -0.270 +33.1 +2.9
methyl cyclopropyl ether -230.629 -0.343 +34.5 +2.1
cyclopropionic acid -304.074 -0.414 +30.1 +1.1
cyclopropane thiol -513.210 -0.220 +52.6 +0.1

a Total energies and correlation energies are reported in har-
trees (hartree). All values reported are calculated at the CCSD(T)
equilibrium geometry. b Indicates a molecule used to calibrate the
functional-group correction scheme. c Ground-state energy. d Cor-
relation energy.

Table 3. For Three Molecules in Valence Double-ú
Basis Sets, Comparison of Energies in hartrees
(hartree) from the 2-RDM Method with the T2

Condition (DQGT2) with the Energies from
Second-Order Many-Body Perturbation Theory

(MP2), Coupled Cluster Method with Single-Double
Excitations and a Perturbative Triples Correction

(CCSD(T)), and Full Configuration Interaction (FCI)

error in (mhartree)

molecule total FCI energy MP2 CCSD(T) DQGT2

CH2 -38.9465 +23.3 +0.6 -0.1
BeH2 -15.8002 +11.8 +0.2 -0.2
H2O -76.1411 +8.0 +0.5 -1.8
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combustion and atmospheric chemistry to medicine, yet
such molecules are often challenging due to the appear-
ance of multireference spin effects. We have recently
extended the variational 2-RDM method from closed-shell
to open-shell molecules.31 The shape of the potential
energy curve of the OH radical is shown in Figure 2 from
the 2-RDM methods with two-positivity (DQG) and two-
positivity plus T2 (DQGT2) conditions as well as the wave
function methods unrestricted second-order many-body
perturbation theory (MBPT2), unrestricted coupled-cluster
singles-doubles (UCCSD), and full configuration interac-
tion (FCI). The potential energy curves of the approximate
methods have been shifted by a constant to make them
agree with the FCI curve at equilibrium. In the bonding
region, the 2-RDM/DQG, UCCSD, and FCI curves are
nearly indistinguishable whereas in the stretched-bond
region the 2-RDM/DQG and UCCSD curves move away
slightly from the FCI solution in opposite directions.
Recently, we have implemented a spin- and symmetry-
adapted form of the T2 constraint within the large-scale
semidefinite-programming algorithm for the 2-RDM
method.32 For OH, the 2-RDM method with the DQGT2
conditions yields potential curves whose shapes in the
figures are indistinguishable from the shapes of the FCI
curves.

Metallic hydrogen is an infinite chain of equally spaced
hydrogen atoms. It can serve as a simple model for
polymers and crystals. We consider the equally spaced,
finite chain H6 where the hydrogen atoms are described
by the valence triple-ú basis set. A potential energy curve
may be formed by equally stretching the five bonds in H6.
Ground-state energies from the variational 2-RDM method
and a variety of wave function techniques are shown in
Figure 3 as functions of the distance R between adjacent
hydrogen atoms.27 The 2-RDM method yields consistent
energies with a maximum error of -10.8 mhartree at 1.5

Å. While the coupled cluster methods are accurate near
the equilibrium geometry with errors at 1 Å of 1.3
mhartree (CCSD) and 0.2 mhartree (CCSD(T)), their
performance rapidly degrades as the bonds are stretched.
At 3.5 Å, each of the coupled cluster methods has an
energy error of at least -160 mhartree, while the 2-RDM
method has an error of only -0.4 mhartree.

The nonvariational calculation of the 2-RDM by the
iterative solution of the CSE for the water molecule in a
double-ú basis set is shown in Figure 4.21,23 The ground-
state electronic energy for H2O is given as a function of
the CSE iterations both with and without purification.
While the CSE with purification captures 92.8% of the
correlation energy, the CSE without purification obtains
only 71.2% of the correlation energy before diverging.23

The contracted power method with purification21,23 over-
comes convergence problems reported by Nakatsuji and
Yasuda11,34 to yield consistent movement toward the
N-particle solution at each CSE iteration. Because the CSE
implicitly depends on a Slater reference through its
cumulant expansion, it does not capture multireference
effects along a bond stretch as accurately as the variational
2-RDM method.

FIGURE 2. The shapes of the potential energy curves of the OH
radical from the 2-RDM methods with DQG and DQGT2 conditions,
as well as the approximate wave function methods UMP2 and
UCCSD, compared with the shape of the FCI curve. The potential
energy curves of the approximate methods are shifted by a constant
to make them agree with the FCI curve at equilibrium or 1.00 Å.
The 2-RDM method with the DQGT2 conditions yields a potential
curve that within the graph is indistinguishable in its contour from
the FCI curve.

FIGURE 3. Ground-state potential energy curves of H6 from 2-RDM
and wave function methods. MP2 and MP4 denote second- and
fourth-order perturbation theories, while CCSD and CCSD(T) repre-
sent coupled cluster methods.

FIGURE 4. The ground-state electronic energy for H2O is shown
as a function of the CSE iterations both with and without purification.
The CSE with purification captures 92.8% of the correlation energy,
but the CSE without purification achieves only 71.2% of the
correlation energy before diverging.
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VI. A Look Ahead
Since the time that Coulson7 discussed the promise and
challenges of computing the energies and properties of
atoms and molecules without the many-electron wave
function, quantum chemistry has experienced many
important advances toward the accurate treatment of
electron correlation including the development of density
functional theory, coupled cluster theory, Monte Carlo
methods, and multireference perturbation theory. The
recent progress in the 2-RDM methods contributes both
a new perspective and tool for describing energies and
properties of atoms and molecules in which correlation
effects are accounted. As has been discussed, two different
complementary methods for the direct calculation of the
2-RDM have been developed: (i) the variational calcula-
tion with the constraint of the 2-RDM by N-represent-
ability conditions16,17,20-33 and (ii) the solution of the
contracted Schrödinger equation with the 2-RDM con-
strained by the structure of the CSE, as well as N-
representability conditions.8-15,34-51 Unlike the variational
wave function techniques, the variational 2-RDM method
yields lower bounds on the ground-state energy in a given
basis set; the CSE yields nonvariational energies. The
variational 2-RDM is especially applicable to treat mo-
lecular systems with difficult-to-parametrize wave func-
tions that arise in chemistry at transition states and other
nonequilibrium geometries, as well as in describing many
open-shell molecules.

With the foundations of 2-RDM theory established,
there remain many open challenges and possibilities. In
the variational method greater experience with the posi-
tivity conditions and developments in large-scale algo-
rithms for semidefinite programming27 are expected to
improve further both their accuracy and their efficiency,
and in the nonvariational CSE methods improvements in
correlated purification,23,50 reconstruction of the higher
RDMs,14,35,39 and other areas will likewise enhance per-
formance. The 2-RDM methods may be especially well-
suited for the use of explicitly correlated basis sets for
enhancing basis set convergence. The calculation of the
2-RDM has important applications in chemistry to study-
ing reactivity29,30 as well as in other areas of correlation
such as spin systems like the Hubbard model, Bose
condensation,25 and molecular conductivity. While still in
its early stages, the 2-RDM method for computing energies
and properties without the many-electron wave function
represents a new approach to investigating the electronic
structure of atomic and molecular systems.

The author expresses his appreciation to Dudley Herschbach,
Herschel Rabitz, John Coleman, and Alexander Mazziotti for their
support and encouragement. The author thanks the NSF, the
Henry-Camille Dreyfus Foundation, the Alfred P. Sloan Founda-
tion, and the David-Lucile Packard Foundation for their support.

References
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